Abstract

The fragmentation of a brittle plate subjected to dynamic biaxial loading is investigated via numerical simulations. The aim is to extend our understanding of the dynamic processes affecting fragment size distributions. A scalable computational framework based on a hybrid cohesive zone model description of fracture and a discontinuous Galerkin formulation is employed. This enables large-scale simulations and, thus, the consideration of rich distributions of defects, as well as an accurate account of the role of stress waves. We study the dependence of the fragmentation response on defect distribution, material properties, and strain rate. A scaling law describing the dependence of fragment size on the parameters is proposed. It is found that fragmentation exhibits two distinct regimes depending on the loading rate and material defect distribution: one controlled by material strength and the other one by material toughness. At low strain rates, fragmentation is controlled by defects, whereas at high strain rates energy balance arguments dominate the fragmentation response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.