Abstract

Abstract The mechanical connection through the formation of focal adhesion complexes (FACs) is critical in cell growth and apoptosis. The FACs act between the cells and the extracellular matrix (ECM), which in turn influences angiogenesis, the growth of new capillary blood vessels [1]. These complexes form direct connections from ECM into the cell cytoskeleton through a series of protein binding events. This linkage is critical for mechanical force sensing and mechanotransduction signaling [2]. Here, the probabilistic modeling of this complex formation is undertaken to begin to uncover the effect of the spatial distribution and temporal effects on this dynamic process. In this, the rich dynamic process of the FACs formation through the binding events of integrin, paxillin, talin, and vinculin are examined. The FACs are mediated through the clustering of transmembrane integrins, which initiate the binding cascade. This interaction has been shown to be a critical event in the activation of the mechanochemical cascade and further mediates downstream signaling of protein tyrosine kinases including focal adhesion kinase [3].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.