Abstract

There is a developing interest in how immune genes may function in other physiological roles, and how traditionally non-immune peptides may, in fact, be active in immune contexts. In the absence of infection, the induction of the immune response is costly, and there are well-characterized trade-offs between immune defense and fitness. The agents behind these fitness costs are less understood. Here we implicate antimicrobial peptides (AMPs) as particularly costly effectors of immunity using an evolutionary framework. We describe the independent loss of AMPs in multiple lineages of Diptera (true flies), tying these observations back to life history. We then focus on the intriguing case of the glycine-rich AMP, Diptericin, and find several instances of loss, pseudogenization, and segregating null alleles. We suggest that Diptericin may be a particularly toxic component of the Dipteran immune response lost in flies either with reduced pathogen pressure or other environmental factors. As Diptericins have recently been described to have neurological roles, these findings parallel a developing interest in AMPs as potentially harmful neuropeptides, and AMPs in other roles beyond immunity.

Highlights

  • The innate immune system plays a vital role in host defense against pathogens

  • We focus on Diptericin, which we suggest is a costly Antimicrobial peptides (AMPs), describing distinct evolutionary patterns across ecologically diverse Drosophila and within D. melanogaster

  • Some AMP Families Are Absent in Diptera

Read more

Summary

Introduction

The innate immune system plays a vital role in host defense against pathogens. This is true in invertebrates, which lack an adaptive immune system. Antimicrobial peptides (AMPs) are one of the main effector molecules of innate immunity in many organisms and, as such, they represent the front lines in the coevolutionary struggle between host and pathogen. The dose makes the poison, and AMPs can be toxic to eukaryotic host cells under certain conditions. This suggests that host immunity needs to strike a delicate balance: AMPs need to be potent enough to quickly inhibit pathogenic microbes, but not so potent that they upset the balance of the microbiota or damage host tissue

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.