Abstract

This article addresses the problem of dynamic event-triggered platooning control of automated vehicles over a vehicular ad-hoc network (VANET) subject to random vehicle-to-vehicle communication topologies. First, a novel dynamic event-triggered mechanism is developed to determine whether or not the sampled data packets of each vehicle should be released into the VANET for intervehicle cooperation. More specifically, the threshold parameter in the triggering condition is dynamically adjusted over time according to the vehicular data variations, the dynamic threshold updating laws, and the bandwidth occupancy indication. Second, a unified platooning control framework is established to account for various spacing policies, randomly switching communication topologies, unknown leader control input, and external disturbances. Then, a new scheduling and platooning control co-design approach is presented such that the controlled vehicular platoon can successfully track the leader vehicle under random communication topologies and different spacing policies, including constant spacing, constant time headway spacing, and variable time headway spacing, meanwhile maintaining efficient bandwidth-aware resource management. Finally, comparative studies are provided to substantiate the effectiveness and merits of the proposed co-design approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.