Abstract
This paper considers semiparametric identification of structural dynamic discrete choice models and models for dynamic treatment effects. Time to treatment and counterfactual outcomes associated with treatment times are jointly analyzed. We examine the implicit assumptions of the dynamic treatment model using the structural model as a benchmark. For the structural model we show the gains from using cross-equation restrictions connecting choices to associated measurements and outcomes. In the dynamic discrete choice model, we identify both subjective and objective outcomes, distinguishing ex post and ex ante outcomes. We show how to identify agent information sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.