Abstract

Machining plan is the core of guiding manufacturing production and is regarded as one of the keys to ensure the quality of product processing. Existing process design methods are inefficient to quickly handle the machining plan changed induced by the unpredictable events in real-time production. It inevitably causes time and economic losses for the enterprise. In order to express the evolutionary characteristics of product processing, the construction method of digital twin process model (DTPM) is proposed based on the knowledge-evolution machining features. Three key technologies include correlation structure of process knowledge, expression method of the evolution geometric features and the association mechanism between two are solved. On this basis, the construction framework of DTPM is illustrated. Then, the organisation and management mechanism of multi-source heterogeneous data is discussed in detail. At last, a case study of the complex machined part is researched, the results show that the processing time reduced by about 7% and the processing stability improved by 40%. Meanwhile, the implementation scheme, application process and effect of this case are described in detail to provide reference for enterprises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.