Abstract

To test the hypothesis that a noninvasive dynamic contrast enhanced MRI (DCE-MRI) derived interstitial volume fraction (ve ) and/or distribution volume (VD ) were correlated with tumor cellularity in cerebral tumor. T1 -weighted DCE-MRI studies were performed in 18 athymic rats implanted with U251 xenografts. After DCE-MRI, sectioned brain tissues were stained with Hematoxylin and Eosin for cell counting. Using a Standard Model analysis and Logan graphical plot, DCE-MRI image sets during and after the injection of a gadolinium contrast agent were used to estimate the parameters plasma volume (vp ), forward transfer constant (K(trans) ), ve , and VD . Parameter values in regions where the standard model was selected as the best model were: (mean ± S.D.): vp = (0.81 ± 0.40)%, K(trans) = (2.09 ± 0.65) × 10(-2) min(-1) , ve = (6.65 ± 1.86)%, and VD = (7.21 ± 1.98)%. The Logan-estimated VD was strongly correlated with the standard model's vp + ve (r = 0.91, P < 0.001). The parameters, ve and/or VD , were significantly correlated with tumor cellularity (r ≥ -0.75, P < 0.001 for both). These data suggest that tumor cellularity can be estimated noninvasively by DCE-MRI, thus supporting its utility in assessing tumor pathophysiology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.