Abstract

The advent of waveform-agile sensors has enabled the design of tracking systems where the transmitted waveform is changed on-the-fly in response to the tracker's requirements. This approach can provide performance improvements over individual optimization of the sensor waveform or the tracking algorithm. In this paper, we consider joint sensor configuration and tracking for the problem of tracking a single target in the presence of clutter using range and range-rate measurements obtained by waveform-agile, active sensors in a narrowband environment. We propose an algorithm to select and configure linear and nonlinear frequency-modulated waveforms to minimize the predicted mean square error (MSE) in the target state estimate; the MSE is predicted using the Cramer-Rao lower bound on the measurement error in conjunction with the unscented transform. We further extend our algorithm to match wideband environments, and we demonstrate the algorithm performance through a Monte Carlo simulation of a radar tracking example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.