Abstract

In this study, lanthanum hexaboride (LaB6) particle-reinforced titanium matrix composites (PRTMCs, TC4/LaB6) were successfully manufactured using the laser powder bed fusion (LPBF) process. Thereafter, the effect of the mass fraction of LaB6 on the microstructure and the dynamic compressive properties was investigated. The results show that the addition of LaB6 leads to significant grain refinement. Moreover, the general trend of grain size reveals a concave bend as the fraction increases from 0.2% to 1.0%. Furthermore, the texture intensity of prior β grains and α grains was found to be weakened in the composites. It was also observed that the TC4/LaB6 have higher quasi-static and dynamic compressive strengths but lower fracture strain when compared with the as-built TC4. The sample with 0.5 wt.% LaB6 was found to have the best strength-toughness synergy among the three groups of composites due to having the smallest grain size. Furthermore, the fracture mode of TC4/LaB6 was found to change from the fracture under the combined action of brittle and ductility to the cleavage fracture. This study was able to provide a theoretical basis for an in-depth understanding of the compressive properties of additive manufacturing of PRTMCs under high-speed loading conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.