Abstract
The dynamic strength of three kinds of ice specimens at −18 ℃ were tested by the split Hopkinson pressure bar (SHPB) method. The pulse-shaping technology was used to achieve constant strain rate loading and stress equalization. The double-peak phenomena of reflection wave and transmission wave were explained by comparing with stress waveforms. The compression stress of distill-water ice in the strain rate range from 700 to 2 700 s−1 is 14.5−49.3 MPa, and it is much higher than the static data. Generally, the dynamic compression stress of the impurity-water ice is higher than that of the distill-water ice, this indicate that the ice specimens become harder after adding impurities, and the capability to resist deformation is enhanced. Compared with a-type and c-type specimens, the crack stress of b-type specimens becomes higher and its dispersiveness is lower. This indicates that the adhesive forces between impurities and ice crystals become stronger, and the expending and nucleate process of cracks is restrained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.