Abstract

Abstract Minimally invasive percutaneous needle-based procedures such as brachytherapy, ablation, and biopsy are standard clinical procedures in cancer interventions. Active needle steering increases the target placement accuracy, and consequently improves the clinical outcome. In this work, dynamical characteristic analysis and FEM modeling of flexible joints of a 3D steerable active flexible needle, when actuated by three Shape Memory Alloy (SMA) actuators, are studied. The Shape Memory Effect (SME) and Pseudoelasticity (PE) of the SMA actuators, their biocompatibility, and high corrosion resistance have made them appropriate alternatives in biomedical applications. Modelling the dynamics and FEM analyses of the flexible active needle during actuation is essential before predicting the active needle’s behavior inside tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.