Abstract

BackgroundThe molecular mechanisms of genome reprogramming during transcriptional responses to stress are associated with specific chromatin modifications. Available data, however, describe histone modifications only at individual plant genes induced by stress. We have no knowledge of chromatin modifications taking place at genes whose transcription has been down-regulated or on the genome-wide chromatin modification patterns that occur during the plant's response to dehydration stress.ResultsUsing chromatin immunoprecipitation and deep sequencing (ChIP-Seq) we established the whole-genome distribution patterns of histone H3 lysine 4 mono-, di-, and tri-methylation (H3K4me1, H3K4me2, and H3K4me3, respectively) in Arabidopsis thaliana during watered and dehydration stress conditions. In contrast to the relatively even distribution of H3 throughout the genome, the H3K4me1, H3K4me2, and H3K4me3 marks are predominantly located on genes. About 90% of annotated genes carry one or more of the H3K4 methylation marks. The H3K4me1 and H3K4me2 marks are more widely distributed (80% and 84%, respectively) than the H3K4me3 marks (62%), but the H3K4me2 and H3K4me1 levels changed only modestly during dehydration stress. By contrast, the H3K4me3 abundance changed robustly when transcripts levels from responding genes increased or decreased. In contrast to the prominent H3K4me3 peaks present at the 5'-ends of most transcribed genes, genes inducible by dehydration and ABA displayed atypically broader H3K4me3 distribution profiles that were present before and after the stress.ConclusionsA higher number (90%) of annotated Arabidopsis genes carry one or more types of H3K4me marks than previously reported. During the response to dehydration stress the changes in H3K4me1, H3K4me2, and H3K4me3 patterns show different dynamics and specific patterns at up-regulated, down-regulated, and unaffected genes. The different behavior of each methylation mark during the response process illustrates that they have distinct roles in the transcriptional response of implicated genes. The broad H3K4me3 distribution profiles on nucleosomes of stress-induced genes uncovered a specific chromatin pattern associated with many of the genes involved in the dehydration stress response.

Highlights

  • The molecular mechanisms of genome reprogramming during transcriptional responses to stress are associated with specific chromatin modifications

  • Changes in gene expression in plants exposed to soil water deficit conditions Plants were watered or subjected to dehydration stress by withholding water until a relative water content (RWC) of 65% was reached

  • The mRNAs from rosette leaves of nonstressed and dehydration-stressed Arabidopsis plants were analyzed by microarrays (Additional file 2, Table S1)

Read more

Summary

Introduction

The molecular mechanisms of genome reprogramming during transcriptional responses to stress are associated with specific chromatin modifications. Describe histone modifications only at individual plant genes induced by stress. We have no knowledge of chromatin modifications taking place at genes whose transcription has been down-regulated or on the genome-wide chromatin modification patterns that occur during the plant’s response to dehydration stress. It is important to note, that currently available data describe histone modifications only at individual stress-induced plant genes. Genome-wide transcript patterns in watered and dehydration stressed plants were compared with changes in the H3K4me, H3K4me, and H3K4me levels of nucleosomes associated with responding genes. Using chromatin immunoprecipitation (ChIP) with H3K4 methylation specific antibodies and genome-wide sequencing (ChIP-Seq), we revealed different dynamics and different magnitudes of the changes in H3K4me, H3K4me, and H3K4me profiles taking place upon dehydration stress. We demonstrate specific patterns of the H3K4me, H3K4me, and H3K4me distributions at up-regulated, down-regulated, and unaffected genes during the stress

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.