Abstract
This paper presents an inversion algorithm for dynamic Bayesian networks towards robust speech recognition, namely DBNI, which is a generalization of hidden Markov model inversion (HMMI). As a dual procedure of expectation maximization (EM)-based model reestimation, DBNI finds the 'uncontaminated' speech by moving the input noisy speech to the Gaussian means under the maximum likelihood (ML) sense given the DBN models trained on clean speech. This algorithm can provide both the expressive advantage from DBN and the noise-removal feature from model inversion. Experiments on the Aurora 2.0 database show that the hidden feature model (a typical DBN for speech recognition) with the DBNI algorithm achieves superior performance in terms of word error rate reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.