Abstract

Structural characterization of alternatively folded and partially disordered protein conformations remains challenging. Outer surface protein A (OspA) is a pivotal protein in Borrelia infection, which is the etiological agent of Lyme disease. OspA exists in equilibrium with intermediate conformations, in which the central and the C-terminal regions of the protein have lower stabilities than the N-terminal. Here, we characterize pressure- and temperature-stabilized intermediates of OspA by nuclear magnetic resonance spectroscopy combined with paramagnetic relaxation enhancement (PRE). We found that although the C-terminal region of the intermediate was partially disordered, it retains weak specific contact with the N-terminal region, owing to a twist of the central β-sheet and increased flexibility in the polypeptide chain. The disordered C-terminal region of the pressure-stabilized intermediate was more compact than that of the temperature-stabilized form. Further, molecular dynamics simulation demonstrated that temperature-induced disordering of the β-sheet was initiated at the C-terminal region and continued through to the central region. An ensemble of simulation snapshots qualitatively described the PRE data from the intermediate and indicated that the intermediate structures of OspA may expose tick receptor-binding sites more readily than does the basic folded conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.