Abstract

Dynamic analysis of multi-directional functionally graded annular plates is achieved in this paper using a semi-analytical numerical method entitled the state space-based differential quadrature method. Based on the three-dimensional elastic theory and assuming the material properties having an exponent-law variation along the thickness, radial direction or both directions, the frequency equations of free vibration of multi-directional functionally graded annular plates are derived under various boundary conditions. Numerical examples are presented to validate the approach and the superiority of this method is also demonstrated. Then free vibration of functionally graded annular plates is studied for different variations of material properties along the thickness, radial direction and both directions, respectively. And the influences of the material property graded variations on the dynamic behavior are also investigated. The multi-directional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.