Abstract

<abstract><p>In this paper, a fractional order HIV/HTLV co-infection model with HIV-specific antibody immune response is established. Two cases are considered: constant control and optimal control. For the constant control system, the existence and uniqueness of the positive solutions are proved, and then the sufficient conditions for the existence and stability of five equilibriums are obtained. For the second case, the Pontryagin's Maximum Principle is used to analyze the optimal control, and the formula of the optimal solution are derived. After that, some numerical simulations are performed to validate the theoretical prediction. Numerical simulations indicate that in the case of HIV/HTLV co-infection, the concentration of $CD4^{+}T$ cells is no longer suitable as an effective reference data for understanding the development process of the disease. On the contrary, the number of HIV virus particles should be used as an important indicator for reference.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.