Abstract

The Organic Rankine Cycle (ORC) system is a rather promising technology for waste heat recovery. However, waste heat source generally presents a fluctuating behavior, which is a big challenge to the security and efficiency of the ORC. An improved dynamic model of ORC system with zeotropic mixture is firstly developed, which can be better adapted to the phase change process of working fluid. Accordingly, dynamic behavior of the ORC and dynamic distribution of evaporation stages are investigated. Besides, three control strategies are proposed to improve the performance of steadiness with external controllable conditions. Results show that a sudden abnormal change occurs in specific enthalpy of working fluid at the evaporator outlet when different disturbances are imposed to the system. It is found that the proposed control strategies are adapted to different heat source fluctuation. The control strategies with feedforward control system work well with low frequency variation of heat source temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.