Abstract

The investigation of dye-sensitized solar cells (DSCs) using a very thin (0.8 to 4.7 μm) transparent photoanode based on a hierarchically nanostructured TiO2 film prepared via Plasma Assisted Supersonic Jet Deposition (PA-SJD), in combination with the DSC benchmark photosensitizer N719, is presented. The cell photovoltages (nearly 0.8 V) and the amount of adsorbed dye and photocurrent densities, normalized over the film thickness, are higher than those of DSCs prepared with thicker (9 μm) conventional screen-printed TiO2 films. A record efficiency value of 5.7% (standard AM 1.5G solar irradiation) for very thin nanostructured titania photoanodes is obtained with a 2 μm PA-SJD TiO2 film. Electrochemical impedance spectroscopy shows that PA-SJD devices are endowed with higher charge recombination resistance (lower recombination losses) and electron lifetimes compared to conventional nanocrystalline films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.