Abstract
Abstract Palaeo-loess and silty aeolian-marine strata are well recognized across the Carboniferous–Permian of equatorial Pangaea. Aeolian-transported dust and loess appear in the Late Devonian in the west, are common by the Late Carboniferous, and predominate across equatorial Pangaea by the Permian. The thickest loess deposits in Earth history – in excess of 1000 m – date from this time, and archive unusually dusty equatorial conditions, especially compared to the dearth of equatorial dust in the Cenozoic. Loess archives a confluence of silt generation, aeolian emission and transport, and ultimate accumulation in dust traps that included ephemerally wet surfaces and epeiric seas. Orogenic belts sourced the silt, and mountain glaciation may have exacerbated voluminous silt production, but remains controversial. In western Pangaea, large rivers transported silt westward, and floodplain deflation supplied silt for loess and dust. Expansion of dust deposition in Late Pennsylvanian time records aridification that progressed across Pangaea, from west to east. Contemporaneous volcanism may have created acidic atmospheric conditions to enhance nutrient reactivity of dusts, affecting Earth's carbon cycle. The late Paleozoic was Earth's largest and most long-lived dust bowl, and this dust represents both an archive and agent of climate and climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.