Abstract

A McKibben-type pneumatic artificial muscle (PAM) is a soft actuator that is widely used in soft robotics, and it generally exhibits complex material dynamics with nonlinearity and hysteresis. In this letter, we propose an extremely durable PAM containing carbon black aggregates and show that its dynamics can be used as a computational resource based on the framework of physical reservoir computing (PRC). By monitoring the information processing capacity of our PAM, we verified that its computational performance will not degrade even if it is randomly actuated more than one million times, which indicates extreme durability. Furthermore, we demonstrate that the sensing function can be outsourced to the soft material dynamics itself without external sensors based on the framework of PRC. Our study paves the way toward reliable information processing powered by soft material dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.