Abstract

This paper presents the durability behavior of pultruded unidirectional carbon fiber reinforced polymer (CFRP) plates immersed in water and seawater at room temperature, under sustained bending strain of 30% and 50% ultimate strain. In this study, water absorption kinetics of CFRP composite and effects of moisture ingress on the mechanical properties, such as tensile properties and short beam shear strength, constitute integral parts of the investigation. The study reveals that seawater immersion leads to higher equilibrium moisture content than water immersion, due to the blister induced damages on the CFRP plate surfaces in seawater. However, diffusion coefficient in seawater immersion is shown to be lower compared to the water immersion, and is attributed to the high concentration of dissolved salts in seawater that retard water diffusion by osmosis. Increasing the bending strain reduces the free volume fraction of the resin matrix, which is responsible for the decreased water uptake and diffusion coefficient for both immersions. Immersion in both media leads to the pronounced degradation in the resin controlled property (i.e., short beam shear strength) of CFRP, but shows less or negligible effects on the fiber controlled properties (i.e., tensile strength and modulus). Both immersion media and 50% bending strain level show remarkable effects on the variation of the mechanical properties of CFRP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.