Abstract
A 6-cell solid oxide electrolysis stack was tested under H2O + CO2 co-electrolysis conditions. The cells used in the stack consisted of a nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode, YSZ electrolyte and lanthanum strontium cobaltite-gadolinium doped ceria (LSC-GDC) composite oxygen electrode. The aim of this study was to investigate the stack durability when operated under dynamic load conditions simulating a wind energy powered SOEC stack for synthesis gas production. The degradation of the stack was observed to be less than 1%/1000 h in terms of area specific resistance during the 1000 h operation. Detailed electrochemical analysis revealed a constant ohmic resistance, indicating intact contact in the stack. Only minor degradation was observed, mainly due to the fuel electrode process. The overall stack voltage degradation rate was 0.8%/1000 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.