Abstract

New treatment modalities for glioblastoma multiforme (GBM) are urgently needed. Proton therapy is considered one of the most effective forms of radiation therapy for GBM. DNA alkylating agents such as temozolomide (TMZ) are known to increase the radiosensitivity of GBM to photon radiation. TMZ is a fairly impotent agent, while duocarmycin SA (DSA) is an extremely potent cytotoxic agent capable of inducing a sequence-selective alkylation of duplex DNA. Here, the effects of sub-nM concentrations of DSA on the radiosensitivity of a human GBM cell line (U-138) to proton irradiation were examined. Radiation sensitivity was determined by viability, apoptosis, necrosis and clonogenic assays. DSA concentrations as low as 0.001 nM significantly sensitized U-138 cells to proton irradiation. DSA demonstrates synergistic cytotoxicity against GBM cells treated with proton radiation in vitro, which may represent a novel therapeutic alternative for the treatment of GBM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.