Abstract
In this paper, we study the quasi-regular and the irreducible unitary representation of affine Lie group of dimension two. First, we prove a sharpening of Fuhr’s work of Fourier transform of quasi-regular representation of . The second, in such the representation of affine Lie group is square-integrable then we compute its Duflo-Moore operator instead of using Fourier transform as in F hr’s work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.