Abstract

Tetracyclines residues, particularly oxytetracycline (OTC) and tetracycline (TC), have raised extensive concern because of their serious adverse effects on human health. Herein, a dual-response fluorescent probe based on nitrogen-doped carbon dots (N-CDs) and Eu3+ hybrid (N-CDs–Eu3+) was developed to selectively determine OTC and TC. The N-CDs act as ancillary ligands of Eu3+ and recognition units of OTC/TC, while the Eu3+ ions chelated with N-CDs can also specifically recognize OTC/TC. Upon inclusion of OTC/TC, an enhancement in Eu3+ emission occurs due to the energy transfer from OTC/TC to Eu3+ and the efficient elimination of quenching effect caused by H2O molecule, which is attributed to the incorporation of N-CDs; while the blue fluorescence emitted by the N-CDs decreases under the inner filter effect and static quenching effect caused by OTC/TC. Based on the double and reverse response signals, the ratiometric detection of OTC and TC in the range of 0.1–45 μΜ and 0.1–30 μΜ is achieved with a detection limit of 0.017 and 0.041 μM, respectively. In addition, the noticeable variation in fluorescence color of the probe is integrated with a smartphone-assisted analysis device for the rapid on-site quantitative assay of OTC, where the detection limit is 0.15 μΜ. The results show that this probe performs with excellent specificity and anti-interference for both OTC and TC, and satisfactory detection results are obtained in lake water, milk, and honey samples, thereby confirming that the probe exhibits promising application in food safety and environmental monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.