Abstract
The methods for controlling spin states of negatively charged nitrogen-vacancy (NV) centers using microwave (MW) or radiofrequency (RF) excitation fields for electron spin and nuclear spin transitions are effective in strong magnetic fields where a level anti-crossing (LAC) occurs. A LAC can also occur at zero field in the presence of transverse strain or electric fields in the diamond crystal, leading to mixing of the spin states. In this paper, we investigate zero-field LAC of NV centers using dual-frequency excitation spectroscopy. Under RF modulation of the spin states, we observe sideband transitions and Autler-Townes splitting in the optically detected magnetic resonance (ODMR) spectra. Numerical simulations show that the splitting originates from Landau-Zener transition between electron spin |$\pm$1> states, which potentially provides a new way of manipulating NV center spin states in zero or weak magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.