Abstract

In this paper, a real-time dynamic programming (RTDP) approach was developed for the first time to jointly carry a slung load using two unmanned aerial vehicles (UAVs) with a trajectory optimized for time and energy consumption. The novel strategy applies RTDP algorithm, where the journey was discretized into horizons consisting of distance intervals, and for every distance interval, an optimal policy was obtained using a dynamic programming sweep. The RTDP-based strategy is applied for dual-UAV collaborative payload transportation using coordinated motion where UAVs act as actuators on the payload. The RTDP algorithm provides the optimal velocity decisions for the slung load transportation to either minimize the journey time or the energy consumption. The RTDP approach involves minimizing a cost function which is derived after simplifying the combined model of the dual-UAV-payload system. The cost function derivation was also accommodated to dynamically distribute the load/energy between two multi-rotor platforms during a transportation mission. The cost function is used to calculate transition costs for all stages and velocity decisions. A terminal cost is used at the last distance interval during the first phase of the journey when the velocity at the end of the current horizon is not known. In the second phase, the last stage or edge of the horizon includes the destination, hence final velocity is known which is used to calculate the transition cost of the final stage. Once all transition costs are calculated, the minimum cost is traced back from the final stage to the current stage to find the optimal velocity decision. The developed approach was validated in MATLAB simulation, software in the loop Gazebo simulation, and real experiments. The numerical and Gazebo simulations showed the successful optimization of journey time or energy consumption based on the selection of the factor λ. Both simulation and real experiments results show the effectiveness and the applicability of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.