Abstract

BackgroundThe development of smart nanocarriers that enable controlled drug release in response to internal and external triggers is an emerging approach for targeted therapy. This study focused on designing pH-sensitive, ultrasound-responsive gelatin/perfluorohexane (PFH) nanodroplets loaded with berberine chloride as a model drug.ResultsThe nanodroplets were prepared using an emulsion technique and optimized by varying process parameters like homogenization rate, polymer concentration, surfactant, drug, and perfluorocarbon content. The optimal formulation yielded nanodroplets with a particle size of 281.7 nm, a drug encapsulation efficiency of 66.8 ± 1.7%, and a passive drug release of 15.4 ± 0.2% within 24 h. Characterization confirmed successful encapsulation and pH-responsive behavior. Ultrasound stimulation significantly enhanced drug release, with 150 kHz being more effective than 1 MHz in triggering acoustic droplet vaporization while minimizing heat generation. After 10 min of radiation, the optimal formulation showed 89.4% cumulative drug release. The nanodroplets displayed stability over 1 month at 4°C.ConclusionsOverall, the dual-triggered nanodroplets demonstrate excellent potential for controlled delivery and targeted release of berberine chloride.Graphical abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.