Abstract
Chemotherapy resistance is the major cause of treatment failure in osteosarcoma, the most common primary bone malignancy, and sensitizing therapeutic strategy is required to improve the clinical outcome. In this study, we discovered that navitoclax, a selective inhibitor of Bcl-2/Bcl-xL, effectively combats chemoresistance in osteosarcoma. Our research revealed that Bcl-2, but not Bcl-xL, is upregulated in osteosarcoma cells that are resistant to doxorubicin. However, venetoclax, a specific inhibitor of Bcl-2, did not exhibit activity against doxorubicin-resistant cells. Further analysis showed that depleting either Bcl-2 or Bcl-xL alone was insufficient to overcome doxorubicin resistance. Only by depleting both Bcl-2 and Bcl-xL significantly reduce the viability of doxorubicin-resistant cells. Similarly, navitoclax not only decreased the viability of doxorubicin-resistant cells but also acted synergistically with doxorubicin in cells sensitive to the drug. To confirm the ability of navitoclax to overcome doxorubicin resistance, we conducted experiments using multiple mouse models of osteosarcoma, both doxorubicin-sensitive and doxorubicin-resistant. The results provided confirmation that navitoclax is effective in overcoming doxorubicin resistance. Our findings demonstrate that simultaneous inhibition of Bcl-2 and Bcl-xL could serve as a novel strategy to sensitize chemoresistant osteosarcoma cells. Moreover, our study presents preclinical evidence supporting the potential of a navitoclax and doxorubicin combination therapy for the treatment of osteosarcoma, paving the way for future clinical investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.