Abstract

Silicon (Si) is attracted much attention due to its outstanding theoretical capacity (4200 mAh/g) as the anode of lithium-ion batteries (LIBs). However, the large volume change and low electron/ion conductivity during the charge and discharge process limit the electrochemical performance of Si-based anodes. Here we demonstrate a foldable acrylic yarn-based composite carbon nanofiber embedded by Si@SiOx particles (Si@SiOx-CACNFs) as the anode material. Since the amorphous SiOx and carbon (C) coating on the outside of the Si particles can provide a double buffer for volume expansion while reducing the contact between the Si core and the electrolyte to form a thin and stable solid electrolyte interface (SEI) film. Simultaneous in-situ electrochemical impedance spectroscopy (in-situ EIS) and galvanostatic intermittent titration technique (GITT) tests show that SiOx and C have higher ion/electron transport rates, and in addition, using acrylic fiber yarn and Zn(Ac)2 as raw materials reduces the manufacturing cost and enhanced mechanical properties. Therefore, the half-cell can achieve a high initial Coulombic efficiency (ICE) of 82.3% and a reversible capacity of 1358.2 mAh/g after 180 cycles. It can return to its original shape and remain intact after four consecutive folds, and the soft-pack full battery can also light up LED lights under different bending conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.