Abstract

Colorimetric and fluorescent probes have received a lot of attention for detecting lethal analytes in realistic systems and in living things. Herein, a dual-approachable Benzo-hemicyaninebased red-emitting fluorescent probe PBiSMe, for distinct and instantaneous detection of CN- and HS- was synthesized. The PBiSMe emitted red fluorescence (570 nm) can switch to turn-off (570 nm) and blue fluorescence (465 nm) in response to CN- and HS-, respectively. Other nucleophilic reagents, such as reactive sulfur species (RSS) and anions, have no contact or interference with the probe; instead, a unique approach is undertaken to exclusively interact with CN- and HS- over a wide pH range. The measured detection limits for CN- (0.43 μM) and HS- (0.22 μM) ions are lower than the World Health Organization's (WHO) recommended levels in drinking water. We confirmed 1:1 stoichiometry ratio using Job's plot and observed good quantum yield for both analytes. The probe-coated paper strips were used to detect the H2S gas produced by food spoilage (such as eggs, raw meat, and fish) via an eye-catching visual response. Moreover, fluorescence bioimaging studies of living cells was done to confirm the probe's potential by monitoring the presence of CN- and HS- in a living system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.