Abstract

Microalgal biotechnologies have emerged with high potential for removal of various organic pollutants, such as pharmaceutical and personal care products (PPCPs), from waste streams. In the present study, the removal mechanisms for three typical PPCPs and the lipid performance of Chlamydomonas sp. Tai-03 were thoroughly investigated. Bisphenol A (BPA) and Tetracycline (TCY) achieved complete removal while only ~20% Sulfamethoxazole (SMX) could be removed, even at low concentrations of 1 mg L−1. The mechanisms of elimination showed variation as only SMX could be removed through biodegradation, while ~68.2% TCY and ~14% BPA were removed by a combination of photolysis and hydrolysis. Analysis revealed three intermediates of SMX biodegradation, two of which exhibited high toxicity. Moreover, the lipid content of Chlamydomonas sp. Tai-03 increased from 5 to 49.5% with the addition of SMX, TCY and BPA, with lipid quality varying according to the type of PPCPs. In particular, the dominant component (C18:1) abundance was increased by 15.2% at 10 mg L−1 TCY. Overall, these findings provide a baseline for optimization of microalgal biodiesel production coupled with efficient PPCPs treatment biotechnology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.