Abstract

This paper presents a class of dual–primal proximal point algorithms (PPAs) for extended convex programming with linear constraints. By choosing appropriate proximal regularization matrices, the application of the general PPA to the equivalent variational inequality of the extended convex programming with linear constraints can result in easy proximal subproblems. In theory, the sequence generated by the general PPA may fail to converge since the proximal regularization matrix is asymmetric sometimes. So we construct descent directions derived from the solution obtained by the general PPA. Different step lengths and descent directions are chosen with the negligible additional computational load. The global convergence of the new algorithms is proved easily based on the fact that the sequences generated are Fejér monotone. Furthermore, we provide a simple proof for the O(1/t) convergence rate of these algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.