Abstract

This work designed a fluorometric/colorimetric dual-mode sensor for detecting 2,6-dipicolinic acid (DPA) based on the blue emission property and peroxidase-like activity of Fe-MIL-88NH2. The fluorescence of Fe-MIL-88NH2 was obviously turned off by Cu2+, but DPA was able to bring it back because it has a strong chelate bond with Cu2+. Fe-MIL-88NH2 also displayed high peroxidase-like activity, which accelerated the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to the blue oxidation product (oxTMB) when H2O2 was present. When DPA was added, it efficiently inhibited the peroxidase-like activity of Fe-MIL-88NH2, causing less oxTMB and less absorbance at 652 nm. The fluorescence recovery of Fe-MIL-88NH2 and the change in absorbance at 652 nm were used as analytical signals for dual-mode detection of DPA. The linear responses in the range of 10–60 μM and 60–160 μM were achieved for the fluorometric mode, and the limit of detection (LOD) was 1.46 μM. The respective values of linear range and LOD for the colorimetric mode were 5–25 μM and 3.00 μM, respectively. In summary, the dual-mode testing strategy successfully detected DPA in aqueous environmental samples, suggesting great potential in disease prevention and environmental analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.