Abstract

High-performance semiconductor devices capable of multiple functions are pivotal in meeting the challenges of miniaturization and integration in advanced technologies. Despite the inherent difficulties of incorporating dual functionality within a single device, a high-performance, dual-mode device is reported. This device integrates an ultra-thin Al2O3 passivation layer with a PbS/Si hybrid heterojunction, which can simultaneously enable optoelectronic detection and neuromorphic operation. In mode 1, the device efficiently separates photo-generated electron-hole pairs, exhibiting an ultra-wide spectral response from ultraviolet (265nm) to near-infrared (1650nm) wavelengths. It also reproduces high-quality images of 256×256 pixels, achieving a Q-value as low as 0.00437µWcm- 2 at a light intensity of 8.58µWcm- 2. Meanwhile, when in mode 2, the as-assembled device with typical persistent photoconductivity (PPC) behavior can act as a neuromorphic device, which can achieve 96.5% accuracy in classifying standard digits underscoring its efficacy in temporal information processing. It is believed that the present dual-function devices potentially advance the multifunctionality and miniaturization of chips for intelligence applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.