Abstract

Atomically dispersed catalysts, with maximized atom utilization of expensive metal components and relatively stable ligand structures, offer high reactivity and selectivity. However, the formation of atomic-scale metals without aggregation remains a formidable challenge due to thermodynamic stabilization driving forces. Here, a top-down process is presented that starts from iron nanoparticles, using dual-metal interbonds (RhFe bonding) as a chemical facilitator to spontaneously convert Fe nanoparticles to single atoms at low temperatures. The presence of RhFe bonding between adjacent Fe and Rh single atoms contributes to the thermodynamic stability, which facilitates the stripping of a single Fe atom from the Fe nanoparticles, leading to the stabilized single atom. The dual single-atom Rh-Fe catalyst renders excellent electrocatalytic performance for the hydrogen evolution reaction in an acidic electrolyte. This discovery of dual-metal interbonding as a chemical facilitator paves a novel route for atomic dispersion of chemical metals and the design of efficient catalysts at the atomic scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.