Abstract
Recently, differential information as local intrinsic feature descriptors has been used for mesh editing. Given certain user input as constraints, a deformed mesh is reconstructed by minimizing the changes in the differential information. Since the differential information is encoded in a global coordinate system, it must somehow be transformed to fit the orientations of details in the deformed surface, otherwise distortion will appear. We observe that visually pleasing deformed meshes should preserve both local parameterization and geometry details. We propose to encode these two types of information in the dual mesh domain due to the simplicity of the neighborhood structure of dual mesh vertices. Both sets of information are nondirectional and nonlinearly dependent on the vertex positions. Thus, we present a novel editing framework that iteratively updates both the primal vertex positions and the dual Laplacian coordinates to progressively reduce distortion in parametrization and geometry. Unlike previous related work, our method can produce visually pleasing deformations with simple user interaction, requiring only the handle positions, not local frames at the handles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Visualization and Computer Graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.