Abstract

Alginate is an abundant natural polysaccharide widely utilized in various biomedical applications. Alginate also possesses numerous hydroxyl and carboxylate functional groups that allow chemical modifications to introduce different functionalities. However, it is difficult to apply various chemical reactions to alginate due to limited solubility in organic solvents. Herein, functional moieties for radical polymerization and cell adhesion were separately conjugated to hydroxyl and carboxylate groups of alginate, respectively, in order to independently control the crosslinking density and cell adhesive properties of hydrogels. Sodium counterions of alginate are first substituted with tetrabutylammonium ions to facilitate the dissolution in an organic solvent, followed by in situ conjugations of (1) cell adhesion molecules (CAM) via carbodiimide-mediated amide formation and (2) methacrylate via ring-opening nucleophilic reaction. The resulting CAM-linked methacrylic alginate was able to not only crosslink different monomers to form hydrogels with varying mechanical properties, but also induce stable cell adhesion to the hydrogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.