Abstract
To quantify the contribution of lesion location and patient positioning, dual-energy approach, patient size, and radiation dose to the error of dual-energy CT-based iodine quantification (DECT-IQ) in liver tumors. A phantom with four liver lesions (diameter 15 mm; iodine concentration 0-5 mgI/mL) and two sizes was used. One lesion emulated a subdiaphragmatic lesion. Both sizes were imaged in dual-energy mode on (1) a dual-source DECT (DS-DE) at 100/Sn150 kV and (2) a single-source split-filter DECT (SF-DE) at AuSn120 kV at two radiation doses (8 and 12 mGy). Scans were performed at seven different vertical table positions (from -6 to + 6 cm from the gantry isocenter). Iodine concentration was repeatedly measured and absolute errors (errorabs) were calculated. Errors were compared using robust repeated-measures ANOVAs with post-hoc comparisons. A linear mixed effect model was used to determine the factors influencing the error of DECT-IQ. The linear mixed effect models showed that errors were significantly influenced by DECT approach, phantom size, and lesion location (all p < 0.001). The impact of lesion location on the error was stronger in SF-DE compared to DS-DE. Radiation dose did not significantly influence error (p = 0.22). When averaged across all setups, errorabs was significantly higher for SF-DE (2.08 ± 1.92 mgI/mL) compared to DS-DE (0.37 ± 0.29 mgI/mL) (all p < 0.001). Artefacts were found in the subdiaphragmatic lesion for SF-DE with significantly increased errorabs compared to DS-DE (p < 0.001). Errorabs was significantly higher in the large compared to the medium phantom for DS-DE (0.30 ± 0.23 mgI/mL vs. 0.43 ± 0.33 mgI/mL) and SF-DE (1.68 ± 1.99 vs. 2.36 ± 1.81 mgI/mL) (p < 0.001). The dual-energy approach, patient size, and lesion location modified by patient position significantly impacted DECT-IQ in simulated liver tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.