Abstract

This study sought to evaluate the antitumor effects of and elucidate the mechanisms underlying (−)-epigallocatechin-3-O-gallate (EGCG) and polyethyleneglycol (PEG)-modified liposomes. EGCG functions as a target ligand of the 67-kDa laminin receptor (67LR), which is expressed on high-grade tumor cells. An EGCG derivative was synthesized for binding to the end of PEG. Doxorubicin (DOX)-loaded EGCG-PEG-modified liposome (EPL) significantly decreased tumor size in mice bearing high 67LR-high-expressing tumors. Caspase-3 activity, which indicates induction of apoptosis, was also elevated only in the EPL group. The importance of PEG for the antitumor effects of EGCG was noted, as soluble EGCG did not accumulate at a sufficient concentration to exert an apoptotic effect. Moreover, EPL significantly increased caspase-8 activity, suggesting that EPL-induced apoptosis occurred due to caspase-8 activity induced following the binding of EGCG to 67LR as a cell-death ligand. In conclusion, EPL appear to have superior antitumor activity against high 67LR-expressing tumor cells, as the liposomes had dual effects, namely antitumor effects due to the loaded DOX and apoptosis induced by the bound EGCG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.