Abstract

A three-dimensional model has been developed to describe the multiphase release of macromolecular drugs encapsulated in a hydrogel. The heterogeneity of network mesh size was considered by assigning varying diffusion coefficients to the network lattices randomly. Using a stochastic approach, the random nature of diffusion of drug molecules was captured within the network. The simplest form of distribution containing two diffusion coefficients was tested. To generate the drug release profiles for experimental validation under the limitation of computational cost, a simple scaling relationship was employed. Unlike the single-diffusivity model, the dual-diffusivity model showed good agreement with the experimental data in describing the release profiles of macromolecular drugs of three different sizes from chemically cross-linked dextran hydrogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.