Abstract
W. Michaelis showed for Lie bialgebras that the dual coalgebra of a Lie algebra is a Lie bialgebra. In the present article we study an analogous question in the case of Jordan bialgebras. We prove that a simple infinite-dimensional Jordan superalgebra of vector type possesses a nonzero dual coalgebra. Thereby, we demonstrate that the hypothesis formulated by W. Michaelis for Lie coalgebras fails in the case of Jordan supercoalgebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.