Abstract
The number of cores and the capacities of main memory in modern systems have been growing significantly. Specifically, memory scaling, although at a slower pace than computation scaling, provided opportunities for very large DRAMs with Terabytes (TBs) capacity. Consequently, addressing the performance and energy consumption bottlenecks of DRAMs is more important than ever. DRAM memory refresh operation is one of the main contributing factors to the memory overheads, especially for large capacity DRAMs used in modern servers and emerging large-scale data centers. This paper addresses the memory refresh problem by leveraging the fact that most cloud servers host virtualized systems that use similar kernels, libraries, etc. We propose and experimentally evaluate a novel approach that exploits this observation to address the DRAM refresh overhead in such systems. More specifically, in this work, we present DSM, a light-weight hardware extension in memory controller to detect the pages with same content in memory and refresh only one of them and redirect the requests to the others to this page. Our detailed experimental analysis shows that the proposed DSM design can reduce 99\textsuperscriptth percentile memory access latency by up to 2.01x, and it also reduces the overall memory energy consumption by up to 8.5%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Measurement and Analysis of Computing Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.