Abstract

AbstractThe graphite/silicon‐based diffusion‐dependent electrodes (DDEs) are one of the promising electrode designs to realize high energy density for all‐solid‐state batteries (ASSBs) beyond conventional composite electrode design. However, the graphite/silicon‐based electrode also suffers from large initial irreversible capacity loss and capacity fade caused by significant volume change during cycling, which offsets the advantages of the DDEs in ful‐cell configuration. Herein, a new concept is presented for DDEs, dry pre‐lithiated DDEs (PL‐DDEs) by introducing Li metal powder. Since Li metal powder provides Li ions to graphite and silicon even in a dry state, the lithiation states of active materials is increased. Moreover, the residual Li within PL‐DDE further serves as an activator and a reservoir for promoting the lithiation reaction of the active materials and compensating for the active Li loss upon cycling, respectively. Based on these merits, ASSBs with PL‐DDE exhibit excellent cycling performance with higher columbic efficiency (85.2% retention with 99.6% CE at the 200th cycle) compared to bare DDE. Therefore, this dry lithiation process must be a simple but effective design concept for DDEs for high‐energy‐density ASSBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.