Abstract

Voice Onset Time (VOT), a key measurement of speech for basic research and applied medical studies, is the time between the onset of a stop burst and the onset of voicing. When the voicing onset precedes burst onset the VOT is negative; if voicing onset follows the burst, it is positive. In this work, we present a deep-learning model for accurate and reliable measurement of VOT in naturalistic speech. The proposed system addresses two critical issues: it can measure positive and negative VOT equally well, and it is trained to be robust to variation across annotations. Our approach is based on the structured prediction framework, where the feature functions are defined to be RNNs. These learn to capture segmental variation in the signal. Results suggest that our method substantially improves over the current state-of-the-art. In contrast to previous work, our Deep and Robust VOT annotator, Dr.VOT, can successfully estimate negative VOTs while maintaining state-of-the-art performance on positive VOTs. This high level of performance generalizes to new corpora without further retraining. Index Terms: structured prediction, multi-task learning, adversarial training, recurrent neural networks, sequence segmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.