Abstract

Understanding the mechanisms of candidatedrugs play an important role in drug discovery. The activating/inhibiting mechanisms between drugs and targets are major types of mechanisms of drugs. Owing to the complexity of drug-target (DT) mechanisms and data scarcity, modelling this problem based on deep learning methods to accurately predict DT activating/inhibiting mechanisms remains a considerable challenge. Here, by considering network pharmacology, we propose a multi-view deep learning model, DrugAI, which combines four modules, i.e. a graph neural network for drugs, a convolutional neural network for targets, a network embedding module for drugs and targets and a deep neural network for predicting activating/inhibiting mechanisms between drugs and targets. Computational experiments show that DrugAI performs better than state-of-the-art methods and has good robustness and generalization. To demonstrate the reliability of the predictive results of DrugAI, bioassay experiments are conducted to validate two drugs (notopterol and alpha-asarone) predicted to activate TRPV1. Moreover, external validation bears out 61 pairs of mechanism relationships between natural products and their targets predicted by DrugAI based on independent literatures and PubChem bioassays. DrugAI, for the first time, provides a powerful multi-view deep learning framework for robust prediction of DT activating/inhibiting mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.