Abstract

There are multiple methods based on gene expression, copy number variation, and methylation biomarkers for screening drug response have been developed. On the other hand, many machine learning algorithms have been applied in recent years to predict drug response, such as neural networks and random forests for the discovery of genomic markers of drug sensitivity for individual drugs in cancer cell lines. In this paper, we propose a drug response prediction algorithm based on 1D convolutional neural networks with attention mechanism and combined with pathway networks, which combines the individual histological data affecting drug response and considers the topological nature of the pathways to find the subpathways highly correlated with drug response and use this as a feature to predict drug response by training using convolutional neural networks. Thus, the output values will represent the probability of occurrence of each of these two categories. In this experiment, using five-fold cross-validation, the identification accuracy reached an average of 84.6%, which is 4.5% higher than the direct random forest approach for drug prediction with an AUC value. This proves that the use of the one-dimensional1D convolutional neural network with attention mechanism to predict the response of low-grade glioma patients and drugs has better prediction results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.