Abstract
Papillary renal cell carcinoma (pRCC) is the second most common renal cell carcinoma (RCC) subtype and accounts for 10-15% of all RCCs. Despite clinical need, few pharmacogenomics studies in pRCC have been performed. Moreover, current research fails to adequately include pRCC laboratory models, such as the ACHN or Caki-2 pRCC cell lines. The molecular mechanisms involved in pRCC development and drug resistance are more diverse than in clear-cell RCC, in which inactivation of VHL occurs in the majority of tumours. Drug resistance to multiple therapies in pRCC occurs via genetic alteration (such as mutations resulting in abnormal receptor tyrosine kinase activation or RALBP1 inhibition), dysregulation of signalling pathways (such as GSK3β-EIF4EBP1, PI3K-AKT and the MAPK or interleukin signalling pathways), deregulation of cellular processes (such as resistance to apoptosis or epithelial-to-mesenchymal transition) and interactions between the cell and its environment (for example, through activation of matrix metalloproteinases). Improved understanding of resistance mechanisms will facilitate drug discovery and provide new effective therapies. Further studies on novel resistance biomarkers are needed to improve patient prognosis and stratification as well as drug development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.