Abstract

Drug repositioning is an effective strategy to identify new indications for existing drugs, providing the quickest possible transition from bench to bedside. With the rapid development of deep learning, graph convolutional networks (GCNs) have been widely adopted for drug repositioning tasks. However, prior GCNs based methods exist limitations in deeply integrating node features and topological structures, which may hinder the capability of GCNs. In this study, we propose an adaptive GCNs approach, termed AdaDR, for drug repositioning by deeply integrating node features and topological structures. Distinct from conventional graph convolution networks, AdaDR models interactive information between them with adaptive graph convolution operation, which enhances the expression of model. Concretely, AdaDR simultaneously extracts embeddings from node features and topological structures and then uses the attention mechanism to learn adaptive importance weights of the embeddings. Experimental results show that AdaDR achieves better performance than multiple baselines for drug repositioning. Moreover, in the case study, exploratory analyses are offered for finding novel drug-disease associations. The soure code of AdaDRis available at: https://github.com/xinliangSun/AdaDR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.