Abstract
Slippery lubricant-infused surfaces are composite materials consisting of a solid matrix permanently infused by a lubricant. Such surfaces have proved to be highly repellent to various liquids immiscible with the lubricant. Depending on the underlying surface chemistry, different lubricants can be used, including perfluorinated or alkylated oils. Here, we construct patterned slippery surfaces that consist of virtual channels permanently impregnated with an organic oil and surrounded by areas permanently impregnated with a perfluorinated oil. We demonstrate that water droplets preferentially occupy the organic-oil-lubricated virtual channels. Based on a simple model, we evaluate the forces acting on droplets crossing over to the regions impregnated with perfluorinated oil and show that the cloaking of the droplets plays an important role. We study the actuation of droplets in virtual oil-in-oil channels based on gravity and magnetic fields. Finally, we construct a variety of organic-oil-lubricated channel architectures permitting droplet sorting according to size. We believe that this novel approach for the formation of virtual all-liquid surface-tension-confined channels based on lubricant-infused surfaces, channel networks, or patterns will advance the field of droplet-based microfluidics. The approach presented can be potentially useful for applications in biotechnology, diagnostics, or analytical chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.